Learned Trajectory Embedding for Subspace Clustering

Yaroslava Lochman¹ Carl Olsson^{1,2} Christopher Zach¹

¹Chalmers University of Technology ²Lund University

March 12, SSBA 2024

Outline

- ► Introduction: problem formulation, background
- ► Method: architecture, training, trajectory completion algorithm
- ► Results: invariance study, completion evaluation, benchmark
- ► Discussion: future work, Q&A

▶ Input: 2D point trajectories extracted from a video (M_{2F×P})

- ▶ Input: 2D point trajectories extracted from a video $(M_{2F \times P})$
- ▶ Want to find: grouping with associated 3D rigid motions $(B_1, ..., B_c)$

- ▶ Input: 2D point trajectories extracted from a video $(M_{2F \times P})$
- ▶ Want to find: grouping with associated 3D rigid motions $(B_1, ..., B_c)$
- Assuming affine projection

$$\mathbf{M}_{2F\times P}\mathbf{P}_{\pi} \approx \begin{bmatrix} \mathbf{B}_{1}\mathbf{C}_{1}^{\top} & \dots & \mathbf{B}_{c}\mathbf{C}_{c}^{\top} \end{bmatrix}$$

where $P_{\pi} - P \times \overline{P}$ permutation matrix

- ▶ Input: 2D point trajectories extracted from a video $(M_{2F \times P})$
- ▶ Want to find: grouping with associated 3D rigid motions $(B_1, ..., B_c)$
- Assuming affine projection

$$\mathbf{M}_{2F\times P}\mathbf{P}_{\pi} \approx \begin{bmatrix} \mathbf{B}_{1}\mathbf{C}_{1}^{\top} & \dots & \mathbf{B}_{c}\mathbf{C}_{c}^{\top} \end{bmatrix}$$

where $P_{\pi} - P \times \overline{P}$ permutation matrix

Chicken-and-egg problem

- ▶ Input: 2D point trajectories extracted from a video $(M_{2F \times P})$
- ▶ Want to find: grouping with associated 3D rigid motions $(B_1, ..., B_c)$
- Assuming affine projection

$$\mathbf{M}_{2F\times P}\mathbf{P}_{\pi} \approx \begin{bmatrix} \mathbf{B}_{1}\mathbf{C}_{1}^{\top} & \dots & \mathbf{B}_{c}\mathbf{C}_{c}^{\top} \end{bmatrix}$$

where $P_{\pi} - P \times P$ permutation matrix

- Chicken-and-egg problem
- Expect high rates of occlusion in real scenarios

(Nonrigid) structure-from-motion

(Nonrigid) structure-from-motion

► For affine cameras, equivalent to subspace fitting

(Nonrigid) structure-from-motion

- ► For affine cameras, equivalent to subspace fitting
- ▶ SfM too restricting, one rigid object

(Nonrigid) structure-from-motion

- ► For affine cameras, equivalent to subspace fitting
- ▶ SfM too restricting, one rigid object
- NRSfM too general, deforming objects + gives an unconstrained solution

Subspace clustering

► Works with data points in some Hilbert space

- ► Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces

- ► Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces
- \blacktriangleright Aims to find: number, dimensionality and basis of each subspace + grouping

- ► Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces
- \blacktriangleright Aims to find: number, dimensionality and basis of each subspace + grouping
- Apply to our problem directly?

- ► Works with data points in some Hilbert space
- ► Assumes the underlying model is the union of subspaces
- ► Aims to find: number, dimensionality and basis of each subspace + grouping
- ► Apply to our problem directly? High-dimensional case ⇒ slow/inefficient; does not exploit temporal information.

RANSAC variations for multi-model fitting

RANSAC variations for multi-model fitting

► Robust statistical methods, good for low-dimensional data

RANSAC variations for multi-model fitting

- Robust statistical methods, good for low-dimensional data
- ▶ Greedy \Rightarrow inefficient; Joint (with energy minimization) \Rightarrow slow

 \blacktriangleright Learn mapping from single trajectory \mathbf{x}_i to feature representation \mathbf{f}_i

 \blacktriangleright Learn mapping from single trajectory \mathbf{x}_i to feature representation \mathbf{f}_i

▶ \mathbf{f}_i fully identifies generating motion \Rightarrow can be used for clustering

- Learn mapping from single trajectory \mathbf{x}_i to feature representation \mathbf{f}_i
- ▶ f_i fully identifies generating motion \Rightarrow can be used for clustering
- Accurate and fast: no simultaneous grouping and motion estimation at test-time

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length F = 60

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length F = 40

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length F = 30

PointNet style

PointNet style

▶ 1D convolutional in temporal domain

- PointNet style
- ▶ 1D convolutional in temporal domain
- ► No global context (e.g., spatial pooling)

• Subspaces encode change of motion over time \Rightarrow time-dependent basis

- \blacktriangleright Subspaces encode change of motion over time \Rightarrow time-dependent basis
- Basis functions evaluated at time query t

- \blacktriangleright Subspaces encode change of motion over time \Rightarrow time-dependent basis
- Basis functions evaluated at time query t
- Basis coefficients inferred from features with an MLP

Subspace Estimation

- ▶ Subspaces encode change of motion over time ⇒ time-dependent basis
- Basis functions evaluated at time query t
- Basis coefficients inferred from features with an MLP
- Coordinate-MLP style (similar to conditional NeRFs)

 Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances

- Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances
- ► Train subspace estimator via enforcing small residuals

- Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances
- ► Train subspace estimator via enforcing small residuals
- \blacktriangleright + enforce feature closeness of original and reconstructed trajectories

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\mathcal{L}_{\mathsf{InfoNCE}} = \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log\left(\frac{p_{ij}}{p_{ij} + p_{lk}}\right) \qquad p_{ij} = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T}\right)$$

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\mathcal{L}_{\mathsf{InfoNCE}} = \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log\left(\frac{p_{ij}}{p_{ij} + p_{lk}}\right) \qquad p_{ij} = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T}\right)$$

$$\Rightarrow \text{ approx. invariance of } f_4 \text{ wrt. cluster variation } + \text{ smoothness of } q_4$$

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\begin{split} \mathcal{L}_{\text{InfoNCE}} &= \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log\left(\frac{p_{ij}}{p_{ij} + p_{lk}}\right) \qquad p_{ij} = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T}\right) \\ \Rightarrow \text{ approx. invariance of } f_{\theta} \text{ wrt cluster variation } + \text{ smoothness of } g_{\phi} \\ \mathcal{L}_{\text{Residual}} &= \sum_{\mathbf{x}} ||\mathbf{x} - \mathsf{BB}^{\dagger} \mathbf{x}||_2^2 \end{split}$$

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\mathcal{L}_{\mathsf{InfoNCE}} = \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log\left(\frac{p_{ij}}{p_{ij} + p_{lk}}\right) \qquad p_{ij} = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T}\right)$$

$$\Rightarrow \text{ approx invariance of } f_a \text{ wrt cluster variation } + \text{ smoothness of } a_+$$

 $\begin{aligned} \mathcal{L}_{\mathsf{Residual}} &= \sum_{\mathbf{x}} ||\mathbf{x} - \mathsf{B}\mathsf{B}^{\dagger}\mathbf{x}||_2^2 \\ &\Rightarrow \mathsf{geometric\ consistency} \end{aligned}$

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\begin{split} \mathcal{L}_{\mathsf{InfoNCE}} &= \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log \left(\frac{p_{ij}}{p_{ij} + p_{lk}} \right) \qquad p_{ij} = \exp \left(- \frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T} \right) \\ &\Rightarrow \mathsf{approx. invariance of } f_\theta \text{ wrt cluster variation } + \mathsf{smoothness of } g_\phi \right) \\ \mathcal{L}_{\mathsf{Residual}} &= \sum_{\mathbf{x}} ||\mathbf{x} - \mathsf{BB}^{\dagger}\mathbf{x}||_2^2 \\ &\Rightarrow \mathsf{geometric consistency} \end{split}$$

$$\mathcal{L}_{\mathsf{FeatDiff}} = \sum_{\mathbf{x}} \|f_{\theta}(\mathbf{x}) - f_{\theta}\left(\mathsf{BB}^{\dagger}\mathbf{x}\right)\|_{2}^{2}$$

For f_{θ} — feature extractor, g_{ϕ} — subspace estimator:

$$\begin{split} \mathcal{L}_{\mathsf{InfoNCE}} &= \frac{1}{|\mathcal{Q}|} \sum_{(i,j,l,k) \in \mathcal{Q}} \log\left(\frac{p_{ij}}{p_{ij} + p_{lk}}\right) \qquad p_{ij} = \exp\left(-\frac{\|\mathbf{f}_i - \mathbf{f}_j\|_2^2}{T}\right) \\ &\Rightarrow \text{ approx. invariance of } f_\theta \text{ wrt cluster variation + smoothness of } g_\phi \\ \mathcal{L}_{\mathsf{Residual}} &= \sum_{\mathbf{x}} ||\mathbf{x} - \mathsf{BB}^{\dagger}\mathbf{x}||_2^2 \\ &\Rightarrow \text{ geometric consistency} \\ \mathcal{L}_{\mathsf{FeatDiff}} &= \sum_{\mathbf{x}} \|f_\theta(\mathbf{x}) - f_\theta\left(\mathsf{BB}^{\dagger}\mathbf{x}\right)\|_2^2 \end{split}$$

 \Rightarrow approx. invariance of f_{θ} wrt pixel noise + smoothness of f_{θ}

Basis function can be:

Basis function can be:

▶ fully fixed (e.g., DCT) — too restrictive

Basis function can be:

- ▶ fully fixed (e.g., DCT) too restrictive
- ▶ learned "non-parametric" (MLP) can learn anything, too generic

Basis function can be:

- ▶ fully fixed (e.g., DCT) too restrictive
- ▶ learned "non-parametric" (MLP) can learn anything, too generic
- learned parametric (our choice) trainable, but encodes temporal dependencies

Basis function can be:

- ▶ fully fixed (e.g., DCT) too restrictive
- ▶ learned "non-parametric" (MLP) can learn anything, too generic
- learned parametric (our choice) trainable, but encodes temporal dependencies

We use damped version of cosine basis

$$h_{\psi}^{j}(t) = e^{-(\alpha_{j}(t-\mu_{j}))^{2}} \cos(\beta_{j}t + \gamma_{j})$$

Benchmark (fully visible trajectories)

	Hopkins155									
		2 motions	5		3 motions			All		
Method	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time	
RANSAC	5.56	1.18	175ms	22.94	22.03	258ms	9.76	3.21	194ms	
GPCA	4.59	0.38	324ms	28.66	28.26	738ms	10.34	2.54	417ms	
MSL	4.14	0.00	11h 4m	8.23	1.76	1d 23h	5.03	0.00	19h 11m	
LSA	3.45	0.59	7.58s	9.73	2.33	15.96s	4.94	0.90	9.47s	
ALC_5	3.03	0.00		6.26	1.02		3.76	0.26	5m 15s	
ALC _{sp}	2.40	0.43		6.69	0.67		3.37	0.49	6m 11s	
LRR	4.10	0.22		9.89	0.56		5.41	0.53	1.1s	
SSC	0.82	0.00		2.45	0.20		2.45	0.20	920ms	
RSIM	0.78	0.00		1.77	0.28		1.01	0.00	176ms	
MultiCons							4.40		40ms	
Ours	0.63	0.0	7ms	0.60	0.0	10ms	0.62	0.0	9ms	

Benchmark (fully visible trajectories)

	Hopkins155									
		2 motions			3 motions			All		
Method	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time	
RANSAC	5.56	1.18	175ms	22.94	22.03	258ms	9.76	3.21	194ms	
GPCA	4.59	0.38	324ms	28.66	28.26	738ms	10.34	2.54	417ms	
MSL	4.14	0.00	11h 4m	8.23	1.76	1d 23h	5.03	0.00	19h 11m	
LSA	3.45	0.59	7.58s	9.73	2.33	15.96s	4.94	0.90	9.47s	
ALC_5	3.03	0.00		6.26	1.02		3.76	0.26	5m 15s	
ALC _{sp}	2.40	0.43		6.69	0.67		3.37	0.49	6m 11s	
	4.10	0.22		9.89	0.56		5.41	0.53	1.1s	
SSC	0.82	0.00		2.45	0.20		2.45	0.20	920ms	
RSIM	0.78	0.00		1.77	0.28		1.01	0.00	176ms	
MultiCons							4.40		40ms	
Ours	0.63	0.0	7ms	0.60	0.0	10ms	0.62	0.0	9ms	

Benchmark (fully visible trajectories)

	Hopkins155									
		2 motions			3 motions			All	All	
Method	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time	
RANSAC	5.56	1.18	175ms	22.94	22.03	258ms	9.76	3.21	194ms	
GPCA	4.59	0.38	324ms	28.66	28.26	738ms	10.34	2.54	417ms	
MSL	4.14	0.00	11h 4m	8.23	1.76	1d 23h	5.03	0.00	19h 11m	
LSA	3.45	0.59	7.58s	9.73	2.33	15.96s	4.94	0.90	9.47s	
ALC_5	3.03	0.00		6.26	1.02		3.76	0.26	5m 15s	
ALC _{sp}	2.40	0.43		6.69	0.67		3.37	0.49	6m 11s	
LRR	4.10	0.22		9.89	0.56		5.41	0.53	1.1s	
SSC	0.82	0.00		2.45	0.20		2.45	0.20	920ms	
RSIM	0.78	0.00		1.77	0.28		1.01	0.00	176ms	
MultiCons							4.40		40ms	
Ours	0.63	0.0	7ms	0.60	0.0	10ms	0.62	0.0	9ms	

 \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$

- \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$
- $\blacktriangleright \ \hat{\mathbf{x}}(\bar{\mathbf{x}}) := \mathbf{w} \odot \mathbf{x} + \bar{\mathbf{w}} \odot \bar{\mathbf{x}}$

- \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$
- $\blacktriangleright \ \hat{\mathbf{x}}(\bar{\mathbf{x}}) := \mathbf{w} \odot \mathbf{x} + \bar{\mathbf{w}} \odot \bar{\mathbf{x}}$
- Objective of trajectory completion

$$\left\|\hat{\mathbf{x}}(\bar{\mathbf{x}}) - \mathtt{BB}^{\dagger}\hat{\mathbf{x}}(\bar{\mathbf{x}})\right\|^2
ightarrow \min_{\bar{\mathbf{x}}} \qquad (\mathtt{B} = B_{ heta,\phi}(\hat{\mathbf{x}},\mathbf{t}) - \mathsf{output} ext{ of the network})$$

- \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$
- $\blacktriangleright \ \hat{\mathbf{x}}(\bar{\mathbf{x}}) := \mathbf{w} \odot \mathbf{x} + \bar{\mathbf{w}} \odot \bar{\mathbf{x}}$
- Objective of trajectory completion

$$ig|\hat{\mathbf{x}}(ar{\mathbf{x}}) - \mathtt{BB}^{\dagger}\hat{\mathbf{x}}(ar{\mathbf{x}})ig\|^2
ightarrow \min_{ar{\mathbf{x}}} \qquad (\mathtt{B} = B_{ heta,\phi}(ar{\mathbf{x}},\mathbf{t}) - \mathsf{output} ext{ of the network})$$

Linear solution for a fixed B

$$ar{\mathbf{x}}^* = \mathtt{A}(\mathtt{B})\mathbf{x}$$

- \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$
- $\blacktriangleright \ \hat{\mathbf{x}}(\bar{\mathbf{x}}) := \mathbf{w} \odot \mathbf{x} + \bar{\mathbf{w}} \odot \bar{\mathbf{x}}$
- Objective of trajectory completion

$$\left|\hat{\mathbf{x}}(\bar{\mathbf{x}}) - \mathtt{BB}^{\dagger}\hat{\mathbf{x}}(\bar{\mathbf{x}})\right\|^{2}
ightarrow \min_{\bar{\mathbf{x}}} \qquad (\mathtt{B} = B_{ heta,\phi}(\hat{\mathbf{x}},\mathbf{t}) - \mathsf{output} ext{ of the network})$$

Linear solution for a fixed B

$$ar{\mathbf{x}}^* = \mathtt{A}(\mathtt{B})\mathbf{x}$$

Yields iterative procedure

$$\left\{ \begin{array}{l} \mathsf{B}_0 \leftarrow B_{\theta,\phi}(\mathbf{x}_{\mathsf{vis}},\mathbf{t}) \\ \bar{\mathbf{x}}_i \leftarrow \mathsf{A}(\mathsf{B}_{i-1})\mathbf{x} \\ \mathsf{B}_i \leftarrow B_{\theta,\phi}(\mathbf{w}\odot\mathbf{x} \!+\! \bar{\mathbf{w}}\odot\bar{\mathbf{x}}_i,\mathbf{t}) \end{array} \right.$$

- \blacktriangleright Let ${\bf x}$ contain missing values with pattern ${\bf w}$
- $\blacktriangleright \ \hat{\mathbf{x}}(\bar{\mathbf{x}}) := \mathbf{w} \odot \mathbf{x} + \bar{\mathbf{w}} \odot \bar{\mathbf{x}}$
- Objective of trajectory completion

$$\left|\hat{\mathbf{x}}(\bar{\mathbf{x}}) - \mathtt{BB}^{\dagger}\hat{\mathbf{x}}(\bar{\mathbf{x}})\right\|^{2}
ightarrow \min_{\bar{\mathbf{x}}} \qquad (\mathtt{B} = B_{ heta,\phi}(\hat{\mathbf{x}},\mathbf{t}) - \mathsf{output} ext{ of the network})$$

Linear solution for a fixed B

$$ar{\mathbf{x}}^* = \mathtt{A}(\mathtt{B})\mathbf{x}$$

Yields iterative procedure

$$\left\{ egin{array}{l} \mathsf{B}_0 \leftarrow B_{ heta,\phi}(\mathbf{x}_{\mathsf{vis}},\mathbf{t})\ ar{\mathbf{x}}_i \leftarrow \mathtt{A}(\mathsf{B}_{i-1})\mathbf{x}\ \mathsf{B}_i \leftarrow B_{ heta,\phi}(\mathbf{w}\odot\mathbf{x}{+}ar{\mathbf{w}}\odotar{\mathbf{x}}_i,\mathbf{t}) \end{array}
ight.$$

Approximate block-coordinate descent

The network is trained on fully observed trajectories.

^{*}ignoring uniform occlusions

The network is trained on fully observed trajectories. During inference:

^{*}ignoring uniform occlusions

The network is trained on fully observed trajectories. During inference:

► Handling occlusions: full forward pass for the largest fully visible trajectory block* → initial subspaces B → iterative completion.

^{*}ignoring uniform occlusions

The network is trained on fully observed trajectories. During inference:

- ► Handling occlusions: full forward pass for the largest fully visible trajectory block* → initial subspaces B → iterative completion.
- Grouping: partial forward pass through f_{θ} , followed by clustering in the feature space of all scene trajectories.

^{*}ignoring uniform occlusions

The network is trained on fully observed trajectories. During inference:

- ► Handling occlusions: full forward pass for the largest fully visible trajectory block* → initial subspaces B → iterative completion.
- Grouping: partial forward pass through f_{θ} , followed by clustering in the feature space of all scene trajectories.
- ▶ Model estimation: grouping, followed by linear subspace fitting.

^{*}ignoring uniform occlusions

Recovering from Uniform Occlusions

Approximate Invariances of f_{θ}

Approximate Invariances of f_{θ}

Synthesized Tracking Failure

Synthesized Tracking Failure

Synthesized Tracking Failure

	Hopkins155			Нор	Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median	
RANSAC	9.76	3.21	194ms	-	-	-	-	
GPCA	10.34	2.54	417ms			34.60	33.95	
MSL	5.03	0.00	19h 11m					
LSA	4.94	0.90	9.47s			38.30	38.58	
ALC_5	3.76	0.26	5m 15s	3.81	0.17	24.31	19.04	
ALC _{sp}	3.37	0.49	6m 11s	1.28	1.07			
LRR	5.41	0.53	1.1s			33.67	36.01	
SSC	2.45	0.20	920ms			33.88	33.54	
RSIM	1.01	0.00	176ms	0.68	0.70			
MultiCons	4.40		40ms					
Ours	0.62	0.0	9ms	5.12	2.04	5.85	0.80	

	Hopkins155			Нор	kins12	KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194ms	-	-	-	-
GPCA	10.34	2.54	417ms			34.60	33.95
MSL	5.03	0.00	19h 11m				
LSA	4.94	0.90	9.47s			38.30	38.58
ALC_5	3.76	0.26	5m 15s	3.81	0.17	24.31	19.04
ALC _{sp}	3.37	0.49	6m 11s	1.28	1.07		
LRR	5.41	0.53	1.1s			33.67	36.01
SSC	2.45	0.20	920ms			33.88	33.54
RSIM	1.01	0.00	176ms	0.68	0.70		
MultiCons	4.40		40ms				
Ours	0.62	0.0	9ms	5.12	2.04	5.85	0.80

	Hopkins155			Нор	kins12	KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194ms	-	-	-	-
GPCA	10.34	2.54	417ms			34.60	33.95
MSL	5.03	0.00	19h 11m				
LSA	4.94	0.90	9.47s			38.30	38.58
ALC_5	3.76	0.26	5m 15s	3.81	0.17	24.31	19.04
ALC _{sp}	3.37	0.49	6m 11s	1.28	1.07		
LRR	5.41	0.53	1.1s			33.67	36.01
SSC	2.45	0.20	920ms			33.88	33.54
RSIM	1.01	0.00	176ms	0.68	0.70		
MultiCons	4.40		40ms				
Ours	0.62	0.0	9ms	5.12	2.04	5.85	0.80

	Hopkins155			Нор	kins12	KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194ms	-	-	-	-
GPCA	10.34	2.54	417ms			34.60	33.95
MSL	5.03	0.00	19h 11m				
LSA	4.94	0.90	9.47s			38.30	38.58
ALC_5	3.76	0.26	5m 15s	3.81	0.17	24.31	19.04
ALC_{sp}	3.37	0.49	6m 11s	1.28	1.07		
LRR	5.41	0.53	1.1s			33.67	36.01
SSC	2.45	0.20	920ms			33.88	33.54
RSIM	1.01	0.00	176ms	0.68	0.70		
MultiCons	4.40		40ms				
Ours	0.62	0.0	9ms	5.12	2.04	5.85	0.80

	Hopkins155			Нор	Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median	
RANSAC	9.76	3.21	194ms	-	-	-	-	
GPCA	10.34	2.54	417ms			34.60	33.95	
MSL	5.03	0.00	19h 11m					
LSA	4.94	0.90	9.47s			38.30	38.58	
ALC_5	3.76	0.26	5m 15s	3.81	0.17	24.31	19.04	
ALC_{sp}	3.37	0.49	6m 11s	1.28	1.07			
LRR	5.41	0.53	1.1s			33.67	36.01	
SSC	2.45	0.20	920ms			33.88	33.54	
RSIM	1.01	0.00	176ms	0.68	0.70			
MultiCons	4.40		40ms					
Ours	0.62	0.0	9ms	5.12	2.04	5.85	0.80	

Future work

► Generalization

Synthetic data generation

Future work

- Generalization
 - Synthetic data generation
- Model
 - $\blacktriangleright \text{ Affine} \rightarrow \text{pinhole camera model}$
 - Priors on the shape matrix C
 - Temporal uncertainty

Future work

- Generalization
 - Synthetic data generation
- Model
 - ► Affine → pinhole camera model
 - Priors on the shape matrix C
 - Temporal uncertainty
- Architecture
 - Incorporate global context
 - Transformers: better than convolutions? possibility of attention-based completion

Introduction Method Results Discussion

Thank you!

► Q&A

Thank you!

► Q&A

Email: lochman@chalmers.se

Project page

ylochman.github.io/trajectory-embedding