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Outline

▶ Introduction: problem formulation, background

▶ Method: architecture, training, trajectory completion algorithm

▶ Results: invariance study, completion evaluation, benchmark

▶ Discussion: future work, Q&A



Introduction Method Results Discussion

Problem Formulation

▶ Input: 2D point trajectories extracted from a video (M2F×P )

▶ Want to find: grouping with associated 3D rigid motions (B1, ..., Bc)

▶ Assuming affine projection

M2F×P Pπ ≈
[
B1C

⊤
1 ... BcC

⊤
c

]
where Pπ — P × P permutation matrix

▶ Chicken-and-egg problem

▶ Expect high rates of occlusion in real scenarios
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Introduction Method Results Discussion

Background

(Nonrigid) structure-from-motion

▶ For affine cameras, equivalent to subspace fitting

▶ SfM — too restricting, one rigid object

▶ NRSfM — too general, deforming objects + gives
an unconstrained solution

Subspace clustering

▶ Works with data points in some Hilbert space

▶ Assumes the underlying model is the union of subspaces

▶ Aims to find: number, dimensionality and basis of each subspace + grouping

▶ Apply to our problem directly?

High-dimensional case ⇒ slow/inefficient;
does not exploit temporal information.

RANSAC variations for multi-model fitting

▶ Robust statistical methods, good for low-dimensional data

▶ Greedy ⇒ inefficient; Joint (with energy minimization) ⇒ slow

4 / 20
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Introduction Method Results Discussion

Learned Trajectory Embedding

▶ Learn mapping from single trajectory xi to feature representation fi
▶ fi fully identifies generating motion ⇒ can be used for clustering

▶ Accurate and fast: no simultaneous grouping and motion estimation at
test-time
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Introduction Method Results Discussion

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters ⇒ higher errors.

Cluster-to-subspace errors for subsequences of length F = 60

6 / 20



Introduction Method Results Discussion

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters ⇒ higher errors.

Cluster-to-subspace errors for subsequences of length F = 40

6 / 20



Introduction Method Results Discussion

Disjoint Subspace Assumption
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Introduction Method Results Discussion

Feature Extraction

▶ PointNet style

▶ 1D convolutional in temporal domain

▶ No global context (e.g., spatial pooling)
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Introduction Method Results Discussion

Subspace Estimation

▶ Subspaces encode change of motion over time ⇒ time-dependent basis

▶ Basis functions evaluated at time query t

▶ Basis coefficients inferred from features with an MLP

▶ Coordinate-MLP style (similar to conditional NeRFs)
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Introduction Method Results Discussion

Training

▶ Pre-train features via enforcing small within-cluster-distances and large
between-cluster-distances

▶ Train subspace estimator via enforcing small residuals

▶ + enforce feature closeness of original and reconstructed trajectories
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Introduction Method Results Discussion

Losses

For fθ — feature extractor, gϕ — subspace estimator:

LInfoNCE = 1
|Q|

∑
(i,j,l,k)∈Q log

(
pij

pij+plk

)
pij = exp

(
−

∥fi−fj∥
2
2

T

)

⇒ approx. invariance of fθ wrt cluster variation + smoothness of gϕ

LResidual =
∑

x ||x − BB†x||22
⇒ geometric consistency

LFeatDiff =
∑

x ∥fθ(x) − fθ

(
BB†x

)
∥2
2

⇒ approx. invariance of fθ wrt pixel noise + smoothness of fθ

10 / 20
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Introduction Method Results Discussion

Basis Functions for Subspace Representation

Basis function can be:

▶ fully fixed (e.g., DCT) — too restrictive
▶ learned “non-parametric” (MLP) — can learn anything, too generic
▶ learned parametric (our choice) — trainable, but encodes temporal

dependencies
We use damped version of cosine basis

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj)

11 / 20



Introduction Method Results Discussion

Basis Functions for Subspace Representation

Basis function can be:
▶ fully fixed (e.g., DCT) — too restrictive

▶ learned “non-parametric” (MLP) — can learn anything, too generic
▶ learned parametric (our choice) — trainable, but encodes temporal

dependencies
We use damped version of cosine basis

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj)

11 / 20



Introduction Method Results Discussion

Basis Functions for Subspace Representation

Basis function can be:
▶ fully fixed (e.g., DCT) — too restrictive
▶ learned “non-parametric” (MLP) — can learn anything, too generic

▶ learned parametric (our choice) — trainable, but encodes temporal
dependencies

We use damped version of cosine basis

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj)

11 / 20



Introduction Method Results Discussion

Basis Functions for Subspace Representation

Basis function can be:
▶ fully fixed (e.g., DCT) — too restrictive
▶ learned “non-parametric” (MLP) — can learn anything, too generic
▶ learned parametric (our choice) — trainable, but encodes temporal

dependencies

We use damped version of cosine basis

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj)

11 / 20



Introduction Method Results Discussion

Basis Functions for Subspace Representation

Basis function can be:
▶ fully fixed (e.g., DCT) — too restrictive
▶ learned “non-parametric” (MLP) — can learn anything, too generic
▶ learned parametric (our choice) — trainable, but encodes temporal

dependencies
We use damped version of cosine basis

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj)

11 / 20



Introduction Method Results Discussion

Benchmark (fully visible trajectories)

Hopkins155
2 motions 3 motions All

Method Mean Median Time Mean Median Time Mean Median Time
RANSAC 5.56 1.18 175ms 22.94 22.03 258ms 9.76 3.21 194ms
GPCA 4.59 0.38 324ms 28.66 28.26 738ms 10.34 2.54 417ms
MSL 4.14 0.00 11h 4m 8.23 1.76 1d 23h 5.03 0.00 19h 11m
LSA 3.45 0.59 7.58s 9.73 2.33 15.96s 4.94 0.90 9.47s
ALC5 3.03 0.00 - 6.26 1.02 - 3.76 0.26 5m 15s
ALCsp 2.40 0.43 - 6.69 0.67 - 3.37 0.49 6m 11s
LRR 4.10 0.22 - 9.89 0.56 - 5.41 0.53 1.1s
SSC 0.82 0.00 - 2.45 0.20 - 2.45 0.20 920ms
RSIM 0.78 0.00 - 1.77 0.28 - 1.01 0.00 176ms
MultiCons - - - - - - 4.40 - 40ms
Ours 0.63 0.0 7ms 0.60 0.0 10ms 0.62 0.0 9ms
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Introduction Method Results Discussion

Trajectory Completion

▶ Let x contain missing values with pattern w

▶ x̂(x̄) := w ⊙ x+ w̄ ⊙ x̄

▶ Objective of trajectory completion

∥∥x̂(x̄)− BB†x̂(x̄)
∥∥2 → min

x̄
(B = Bθ,ϕ(x̂, t) – output of the network)

▶ Linear solution for a fixed B

x̄∗ = A(B)x

▶ Yields iterative procedure

 B0 ← Bθ,ϕ(xvis, t)
x̄i ← A(Bi−1)x
Bi ← Bθ,ϕ(w ⊙ x+w̄ ⊙ x̄i, t)

▶ Approximate block-coordinate descent
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Framework

The network is trained on fully observed trajectories.

During inference:

▶ Handling occlusions: full forward pass for the largest fully visible trajectory
block∗ → initial subspaces B → iterative completion.

▶ Grouping: partial forward pass through fθ, followed by clustering in the
feature space of all scene trajectories.

▶ Model estimation: grouping, followed by linear subspace fitting.

∗ignoring uniform occlusions
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Introduction Method Results Discussion

Benchmark

Hopkins155 Hopkins12 KT3DMoSeg
Method Mean Median Time Mean Median Mean Median
RANSAC 9.76 3.21 194ms - - - -
GPCA 10.34 2.54 417ms - - 34.60 33.95
MSL 5.03 0.00 19h 11m - - - -
LSA 4.94 0.90 9.47s - - 38.30 38.58
ALC5 3.76 0.26 5m 15s 3.81 0.17 24.31 19.04
ALCsp 3.37 0.49 6m 11s 1.28 1.07 - -
LRR 5.41 0.53 1.1s - - 33.67 36.01
SSC 2.45 0.20 920ms - - 33.88 33.54
RSIM 1.01 0.00 176ms 0.68 0.70 - -
MultiCons 4.40 - 40ms - - - -
Ours 0.62 0.0 9ms 5.12 2.04 5.85 0.80
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Future work

▶ Generalization
▶ Synthetic data generation

▶ Model

▶ Affine → pinhole camera model
▶ Priors on the shape matrix C
▶ Temporal uncertainty

▶ Architecture

▶ Incorporate global context
▶ Transformers: better than convolutions? possibility of attention-based

completion
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Thank you!

▶ Q&A

▶ Email: lochman@chalmers.se

Project page

ylochman.github.io/trajectory-embedding

20 / 20



Introduction Method Results Discussion

Thank you!

▶ Q&A

▶ Email: lochman@chalmers.se

Project page

ylochman.github.io/trajectory-embedding

20 / 20


	Introduction
	Method
	Results
	Discussion

