Learned Trajectory Embedding for Subspace Clustering

Yaroslava Lochman ${ }^{1}$ Carl Olsson ${ }^{1,2} \quad$ Christopher Zach ${ }^{1}$
${ }^{1}$ Chalmers University of Technology ${ }^{2}$ Lund University

March 12, SSBA 2024

LUND

Outline

- Introduction: problem formulation, background
- Method: architecture, training, trajectory completion algorithm
> Results: invariance study, completion evaluation, benchmark
- Discussion: future work, Q\&A

Problem Formulation

Problem Formulation

- Input: 2D point trajectories extracted from a video ($\mathrm{M}_{2 \mathrm{~F} \times \mathrm{P}}$)

Problem Formulation

- Input: 2D point trajectories extracted from a video ($\mathrm{M}_{2 \mathrm{~F} \times \mathrm{P}}$)
- Want to find: grouping with associated 3D rigid motions ($\mathrm{B}_{1}, \ldots, \mathrm{~B}_{c}$)

Problem Formulation

- Input: 2D point trajectories extracted from a video ($\mathrm{M}_{2 \mathrm{~F} \times \mathrm{P}}$)
\downarrow Want to find: grouping with associated 3D rigid motions $\left(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{c}\right)$
- Assuming affine projection

$$
\mathrm{M}_{2 F \times P} \mathrm{P}_{\pi} \approx\left[\begin{array}{lll}
\mathrm{B}_{1} \mathrm{C}_{1}^{\top} & \ldots & \mathrm{B}_{c} \mathrm{C}_{c}^{\top}
\end{array}\right]
$$

where $\mathrm{P}_{\pi}-P \times P$ permutation matrix

Problem Formulation

- Input: 2D point trajectories extracted from a video ($\mathrm{M}_{2 F \times P}$)
- Want to find: grouping with associated 3D rigid motions ($\mathrm{B}_{1}, \ldots, \mathrm{~B}_{c}$)
- Assuming affine projection

$$
\mathrm{M}_{2 F \times P} \mathrm{P}_{\pi} \approx\left[\begin{array}{lll}
\mathrm{B}_{1} \mathrm{C}_{1}^{\top} & \ldots & \mathrm{B}_{c} \mathrm{C}_{c}^{\top}
\end{array}\right]
$$

where $\mathrm{P}_{\pi}-P \times P$ permutation matrix

- Chicken-and-egg problem

Problem Formulation

- Input: 2D point trajectories extracted from a video ($\mathrm{M}_{2 \mathrm{~F} \times \mathrm{P}}$)
\downarrow Want to find: grouping with associated 3D rigid motions $\left(\mathrm{B}_{1}, \ldots, \mathrm{~B}_{c}\right)$
- Assuming affine projection

$$
\mathrm{M}_{2 F \times P} \mathrm{P}_{\pi} \approx\left[\begin{array}{lll}
\mathrm{B}_{1} \mathrm{C}_{1}^{\top} & \ldots & \mathrm{B}_{c} \mathrm{C}_{c}^{\top}
\end{array}\right]
$$

where $\mathrm{P}_{\pi}-P \times P$ permutation matrix

- Chicken-and-egg problem
- Expect high rates of occlusion in real scenarios

Background

(Nonrigid) structure-from-motion

Background

(Nonrigid) structure-from-motion

- For affine cameras, equivalent to subspace fitting

Background

(Nonrigid) structure-from-motion

- For affine cameras, equivalent to subspace fitting
- SfM - too restricting, one rigid object

Background

(Nonrigid) structure-from-motion

- For affine cameras, equivalent to subspace fitting
- SfM - too restricting, one rigid object
- NRSfM - too general, deforming objects + gives
 an unconstrained solution

Background

Subspace clustering

Background

Subspace clustering

- Works with data points in some Hilbert space

Background

Subspace clustering

- Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces

Background

Subspace clustering

- Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces
- Aims to find: number, dimensionality and basis of each subspace + grouping

Background

Subspace clustering

- Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces
- Aims to find: number, dimensionality and basis of each subspace + grouping
- Apply to our problem directly?

Background

Subspace clustering

- Works with data points in some Hilbert space
- Assumes the underlying model is the union of subspaces
- Aims to find: number, dimensionality and basis of each subspace + grouping
- Apply to our problem directly? High-dimensional case \Rightarrow slow/inefficient; does not exploit temporal information.

Background

RANSAC variations for multi-model fitting

Background

RANSAC variations for multi-model fitting

- Robust statistical methods, good for low-dimensional data

Background

RANSAC variations for multi-model fitting

- Robust statistical methods, good for low-dimensional data
- Greedy \Rightarrow inefficient; Joint (with energy minimization) \Rightarrow slow

Learned Trajectory Embedding

Learned Trajectory Embedding

$>$ Learn mapping from single trajectory \mathbf{x}_{i} to feature representation \mathbf{f}_{i}

Learned Trajectory Embedding

- Learn mapping from single trajectory \mathbf{x}_{i} to feature representation \mathbf{f}_{i}
$>\mathrm{f}_{i}$ fully identifies generating motion \Rightarrow can be used for clustering

Learned Trajectory Embedding

$>$ Learn mapping from single trajectory \mathbf{x}_{i} to feature representation \mathbf{f}_{i}
$>\mathrm{f}_{i}$ fully identifies generating motion \Rightarrow can be used for clustering

- Accurate and fast: no simultaneous grouping and motion estimation at test-time

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length $F=60$

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length $F=40$

Disjoint Subspace Assumption

Re-using subspaces to explain trajectories in other clusters \Rightarrow higher errors.

Cluster-to-subspace errors for subsequences of length $F=30$

Feature Extraction

Feature Extraction

- PointNet style

Feature Extraction

- PointNet style
- 1D convolutional in temporal domain

Feature Extraction

- PointNet style
- 1D convolutional in temporal domain
- No global context (e.g., spatial pooling)

Subspace Estimation

Subspace Estimation

- Subspaces encode change of motion over time \Rightarrow time-dependent basis

Subspace Estimation

- Subspaces encode change of motion over time \Rightarrow time-dependent basis
- Basis functions evaluated at time query t

Subspace Estimation

- Subspaces encode change of motion over time \Rightarrow time-dependent basis
- Basis functions evaluated at time query t
- Basis coefficients inferred from features with an MLP

Subspace Estimation

- Subspaces encode change of motion over time \Rightarrow time-dependent basis
- Basis functions evaluated at time query t
- Basis coefficients inferred from features with an MLP
- Coordinate-MLP style (similar to conditional NeRFs)

Training

Training

- Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances

Training

- Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances
- Train subspace estimator via enforcing small residuals

Training

- Pre-train features via enforcing small within-cluster-distances and large between-cluster-distances
- Train subspace estimator via enforcing small residuals
- + enforce feature closeness of original and reconstructed trajectories

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$
\Rightarrow approx. invariance of f_{θ} wrt cluster variation + smoothness of g_{ϕ}

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$
\Rightarrow approx. invariance of f_{θ} wrt cluster variation + smoothness of g_{ϕ}
$\mathcal{L}_{\text {Residual }}=\sum_{\mathrm{x}}\left\|\mathrm{x}-\mathrm{BB}^{\dagger} \mathbf{x}\right\|_{2}^{2}$

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$
\Rightarrow approx. invariance of f_{θ} wrt cluster variation + smoothness of g_{ϕ}
$\mathcal{L}_{\text {Residual }}=\sum_{\mathrm{x}}\left\|\mathrm{x}-\mathrm{BB}^{\dagger} \mathrm{x}\right\|_{2}^{2}$
\Rightarrow geometric consistency

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$
\Rightarrow approx. invariance of f_{θ} wrt cluster variation + smoothness of g_{ϕ}
$\mathcal{L}_{\text {Residual }}=\sum_{\mathrm{x}}\left\|\mathrm{x}-\mathrm{BB}^{\dagger} \mathrm{x}\right\|_{2}^{2}$
\Rightarrow geometric consistency
$\mathcal{L}_{\text {FeatDiff }}=\sum_{\mathbf{x}}\left\|f_{\theta}(\mathbf{x})-f_{\theta}\left(\mathrm{BB}^{\dagger} \mathbf{x}\right)\right\|_{2}^{2}$

Losses

For f_{θ} - feature extractor, g_{ϕ} - subspace estimator:
$\mathcal{L}_{\text {InfoNCE }}=\frac{1}{|\mathcal{Q}|} \sum_{(i, j, l, k) \in \mathcal{Q}} \log \left(\frac{p_{i j}}{p_{i j}+p_{l k}}\right) \quad p_{i j}=\exp \left(-\frac{\left\|\mathbf{f}_{i}-\mathbf{f}_{j}\right\|_{2}^{2}}{T}\right)$
\Rightarrow approx. invariance of f_{θ} wrt cluster variation + smoothness of g_{ϕ}
$\mathcal{L}_{\text {Residual }}=\sum_{\mathrm{x}}\left\|\mathrm{x}-\mathrm{BB}^{\dagger} \mathrm{x}\right\|_{2}^{2}$
\Rightarrow geometric consistency
$\mathcal{L}_{\text {FeatDiff }}=\sum_{\mathbf{x}}\left\|f_{\theta}(\mathbf{x})-f_{\theta}\left(\mathrm{BB}^{\dagger} \mathbf{x}\right)\right\|_{2}^{2}$
\Rightarrow approx. invariance of f_{θ} wrt pixel noise + smoothness of f_{θ}

Basis Functions for Subspace Representation

Basis function can be:

Basis Functions for Subspace Representation

Basis function can be:

- fully fixed (e.g., DCT) — too restrictive

Basis Functions for Subspace Representation

Basis function can be:

- fully fixed (e.g., DCT) — too restrictive
- learned "non-parametric" (MLP) — can learn anything, too generic

Basis Functions for Subspace Representation

Basis function can be:

- fully fixed (e.g., DCT) - too restrictive
- learned "non-parametric" (MLP) - can learn anything, too generic
- learned parametric (our choice) - trainable, but encodes temporal dependencies

Basis Functions for Subspace Representation

Basis function can be:

- fully fixed (e.g., DCT) - too restrictive
- learned "non-parametric" (MLP) - can learn anything, too generic
- learned parametric (our choice) - trainable, but encodes temporal dependencies
We use damped version of cosine basis

$$
h_{\psi}^{j}(t)=e^{-\left(\alpha_{j}\left(t-\mu_{j}\right)\right)^{2}} \cos \left(\beta_{j} t+\gamma_{j}\right)
$$

Benchmark (fully visible trajectories)

Method	2 motions			Hopkins1553 motions			All		
	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time
RANSAC	5.56	1.18	175 ms	22.94	22.03	258ms	9.76	3.21	194ms
GPCA	4.59	0.38	324 ms	28.66	28.26	738ms	10.34	2.54	417 ms
MSL	4.14	0.00	11 h 4 m	8.23	1.76	1d 23h	5.03	0.00	19h 11m
LSA	3.45	0.59	7.58s	9.73	2.33	15.96 s	4.94	0.90	9.47 s
ALC_{5}	3.03	0.00	-	6.26	1.02	-	3.76	0.26	5 m 15 s
$\mathrm{ALC}_{\text {sp }}$	2.40	0.43	-	6.69	0.67	-	3.37	0.49	6 m 11 s
LRR	4.10	0.22	-	9.89	0.56	-	5.41	0.53	1.1 s
SSC	0.82	0.00	-	2.45	0.20	-	2.45	0.20	920 ms
RSIM	0.78	0.00	-	1.77	0.28	-	1.01	0.00	176 ms
MultiCons	-	-	-	-	-	-	4.40	-	40 ms
Ours	0.63	0.0	7 ms	0.60	0.0	10 ms	0.62	0.0	9 ms

Benchmark (fully visible trajectories)

Method	2 motions			Hopkins1553 motions			All		
	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time
RANSAC	5.56	1.18	175ms	22.94	22.03	258ms	9.76	3.21	194ms
GPCA	4.59	0.38	324 ms	28.66	28.26	738 ms	10.34	2.54	417 ms
MSL	4.14	0.00	11 h 4 m	8.23	1.76	1d 23h	5.03	0.00	19h 11m
LSA	3.45	0.59	7.58s	9.73	2.33	15.96s	4.94	0.90	9.47 s
ALC_{5}	3.03	0.00	-	6.26	1.02	-	3.76	0.26	5 m 15 s
$\mathrm{ALC}_{\text {sp }}$	2.40	0.43	-	6.69	0.67	-	3.37	0.49	6 m 11 s
LRR	4.10	0.22	-	9.89	0.56	-	5.41	0.53	1.1 s
SSC	0.82	0.00	-	2.45	0.20	-	2.45	0.20	920ms
RSIM	0.78	0.00	-	1.77	0.28	-	1.01	0.00	176 ms
MultiCons	-	-	-	-	-	-	4.40	-	40 ms
Ours	0.63	0.0	7 ms	0.60	0.0	10 ms	0.62	0.0	9 ms

Benchmark (fully visible trajectories)

Method	2 motions			Hopkins1553 motions			All		
	Mean	Median	Time	Mean	Median	Time	Mean	Median	Time
RANSAC	5.56	1.18	175ms	22.94	22.03	258ms	9.76	3.21	194ms
GPCA	4.59	0.38	324 ms	28.66	28.26	738 ms	10.34	2.54	417 ms
MSL	4.14	0.00	11 h 4 m	8.23	1.76	1d 23h	5.03	0.00	19h 11m
LSA	3.45	0.59	7.58s	9.73	2.33	15.96s	4.94	0.90	9.47 s
ALC_{5}	3.03	0.00	-	6.26	1.02	-	3.76	0.26	5 m 15 s
$\mathrm{ALC}_{\text {sp }}$	2.40	0.43	-	6.69	0.67	-	3.37	0.49	6 m 11 s
LRR	4.10	0.22	-	9.89	0.56	-	5.41	0.53	1.1 s
SSC	0.82	0.00	-	2.45	0.20	-	2.45	0.20	920ms
RSIM	0.78	0.00	-	1.77	0.28	-	1.01	0.00	176 ms
MultiCons	-	-	-	-	-	-	4.40	-	40 ms
Ours	0.63	0.0	7 ms	0.60	0.0	10 ms	0.62	0.0	9 ms

Trajectory Completion

Let x contain missing values with pattern w

Trajectory Completion

- Let x contain missing values with pattern w
$>\hat{\mathbf{x}}(\overline{\mathbf{x}}):=\mathbf{w} \odot \mathbf{x}+\overline{\mathbf{w}} \odot \overline{\mathbf{x}}$

Trajectory Completion

- Let x contain missing values with pattern w
- $\hat{\mathrm{x}}(\overline{\mathrm{x}}):=\mathrm{w} \odot \mathrm{x}+\overline{\mathrm{w}} \odot \overline{\mathrm{x}}$
- Objective of trajectory completion

$$
\left\|\hat{\mathrm{x}}(\overline{\mathrm{x}})-\mathrm{BB}^{\dagger} \hat{\mathrm{x}}(\overline{\mathrm{x}})\right\|^{2} \rightarrow \min _{\overline{\mathrm{x}}} \quad\left(\mathrm{~B}=B_{\theta, \phi}(\hat{\mathrm{x}}, \mathrm{t})-\text { output of the network }\right)
$$

Trajectory Completion

- Let x contain missing values with pattern w
> $\hat{\mathbf{x}}(\overline{\mathrm{x}}):=\mathbf{w} \odot \mathbf{x}+\overline{\mathbf{w}} \odot \overline{\mathrm{x}}$
- Objective of trajectory completion

$$
\left\|\hat{\mathrm{x}}(\overline{\mathrm{x}})-\mathrm{BB}^{\dagger} \hat{\mathrm{x}}(\overline{\mathrm{x}})\right\|^{2} \rightarrow \min _{\overline{\mathrm{x}}} \quad\left(\mathrm{~B}=B_{\theta, \phi}(\hat{\mathrm{x}}, \mathrm{t})-\text { output of the network }\right)
$$

- Linear solution for a fixed B

$$
\overline{\mathrm{x}}^{*}=\mathrm{A}(\mathrm{~B}) \mathrm{x}
$$

Trajectory Completion

Let x contain missing values with pattern w
> $\hat{\mathbf{x}}(\overline{\mathrm{x}}):=\mathrm{w} \odot \mathrm{x}+\overline{\mathbf{w}} \odot \overline{\mathrm{x}}$

- Objective of trajectory completion

$$
\left\|\hat{\mathrm{x}}(\overline{\mathrm{x}})-\mathrm{BB}^{\dagger} \hat{\mathrm{x}}(\overline{\mathrm{x}})\right\|^{2} \rightarrow \min _{\overline{\mathrm{x}}} \quad\left(\mathrm{~B}=B_{\theta, \phi}(\hat{\mathrm{x}}, \mathrm{t})-\text { output of the network }\right)
$$

- Linear solution for a fixed B

$$
\overline{\mathrm{x}}^{*}=\mathrm{A}(\mathrm{~B}) \mathrm{x}
$$

- Yields iterative procedure

$$
\left\{\begin{array}{l}
\mathrm{B}_{0} \leftarrow \mathrm{~B}_{\theta, \phi}\left(\mathbf{x}_{\mathrm{vis}}, \mathrm{t}\right) \\
\overline{\mathbf{x}}_{i} \leftarrow \mathrm{~A}\left(\mathrm{~B}_{i-1}\right) \mathbf{x} \\
\mathrm{B}_{i} \leftarrow B_{\theta, \phi}\left(\mathbf{w} \odot \mathbf{x}+\overline{\mathbf{w}} \odot \overline{\mathbf{x}}_{i}, \mathrm{t}\right)
\end{array}\right.
$$

Trajectory Completion

Let x contain missing values with pattern w
> $\hat{\mathbf{x}}(\overline{\mathrm{x}}):=\mathbf{w} \odot \mathbf{x}+\overline{\mathbf{w}} \odot \overline{\mathbf{x}}$

- Objective of trajectory completion

$$
\left\|\hat{\mathrm{x}}(\overline{\mathrm{x}})-\mathrm{BB}^{\dagger} \hat{\mathrm{x}}(\overline{\mathrm{x}})\right\|^{2} \rightarrow \min _{\overline{\mathrm{x}}} \quad\left(\mathrm{~B}=B_{\theta, \phi}(\hat{\mathrm{x}}, \mathrm{t})-\text { output of the network }\right)
$$

- Linear solution for a fixed B

$$
\overline{\mathrm{x}}^{*}=\mathrm{A}(\mathrm{~B}) \mathrm{x}
$$

- Yields iterative procedure

$$
\left\{\begin{array}{l}
\mathrm{B}_{0} \leftarrow B_{\theta, \phi}\left(\mathbf{x}_{\mathrm{vis}}, \mathrm{t}\right) \\
\overline{\mathbf{x}}_{i} \leftarrow \mathrm{~A}\left(\mathrm{~B}_{i-1}\right) \mathbf{x} \\
\mathrm{B}_{i} \leftarrow B_{\theta, \phi}\left(\mathbf{w} \odot \mathbf{x}+\overline{\mathbf{w}} \odot \overline{\mathbf{x}}_{i}, \mathrm{t}\right)
\end{array}\right.
$$

- Approximate block-coordinate descent

Framework

The network is trained on fully observed trajectories.

Framework

The network is trained on fully observed trajectories. During inference:

Framework

The network is trained on fully observed trajectories. During inference:

- Handling occlusions: full forward pass for the largest fully visible trajectory block* \rightarrow initial subspaces $\mathrm{B} \rightarrow$ iterative completion.

[^0]
Framework

The network is trained on fully observed trajectories. During inference:

- Handling occlusions: full forward pass for the largest fully visible trajectory block* \rightarrow initial subspaces $\mathrm{B} \rightarrow$ iterative completion.
- Grouping: partial forward pass through f_{θ}, followed by clustering in the feature space of all scene trajectories.

[^1]
Framework

The network is trained on fully observed trajectories. During inference:

- Handling occlusions: full forward pass for the largest fully visible trajectory block* \rightarrow initial subspaces $\mathrm{B} \rightarrow$ iterative completion.
- Grouping: partial forward pass through f_{θ}, followed by clustering in the feature space of all scene trajectories.
- Model estimation: grouping, followed by linear subspace fitting.

[^2]
Recovering from Uniform Occlusions

Approximate Invariances of f_{θ}

Approximate Invariances of f_{θ}

Synthesized Tracking Failure

Synthesized Tracking Failure

Synthesized Tracking Failure

Benchmark

	Hopkins155			Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194 ms	-	-	-	-
GPCA	10.34	2.54	417 ms	-	-	34.60	33.95
MSL	5.03	0.00	19 h 11 m	-	-	-	-
LSA	4.94	0.90	9.47 s	-	-	38.30	38.58
ALC $_{5}$	3.76	0.26	5 m 15 s	3.81	0.17	24.31	19.04
ALC	3.37	0.49	6 m 11 s	1.28	1.07	-	-
LRR	5.41	0.53	1.1 s	-	-	33.67	36.01
SSC	2.45	0.20	920 ms	-	-	33.88	33.54
RSIM	1.01	0.00	176 ms	0.68	0.70	-	-
MultiCons	4.40	-	40 ms	-	-	-	-
Ours	0.62	0.0	9 ms	5.12	2.04	5.85	0.80

Benchmark

	Hopkins155			Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194 ms	-	-	-	-
GPCA	10.34	2.54	417 ms	-	-	34.60	33.95
MSL	5.03	0.00	19 h 11 m	-	-	-	-
LSA	4.94	0.90	9.47 s	-	-	38.30	38.58
ALC $_{5}$	3.76	0.26	5 m 15 s	3.81	0.17	24.31	19.04
ALC	3.37	0.49	6 m 11 s	1.28	1.07	-	-
LRR	5.41	0.53	1.1 s	-	-	33.67	36.01
SSC	2.45	0.20	920 ms	-	-	33.88	33.54
RSIM	1.01	0.00	176 ms	0.68	0.70	-	-
MultiCons	4.40	-	40 ms	-	-	-	-
Ours	$\mathbf{0 . 6 2}$	$\mathbf{0 . 0}$	9 ms	5.12	2.04	5.85	0.80

Benchmark

	Hopkins155			Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194 ms	-	-	-	-
GPCA	10.34	2.54	417 ms	-	-	34.60	33.95
MSL	5.03	0.00	19 h 11 m	-	-	-	-
LSA	4.94	0.90	9.47 s	-	-	38.30	38.58
ALC	3.76	0.26	5 m 15 s	3.81	0.17	24.31	19.04
ALC	3.37	0.49	6 m 11 s	1.28	1.07	-	-
LRR	5.41	0.53	1.1 s	-	-	33.67	36.01
SSC	2.45	0.20	920 ms	-	-	33.88	33.54
RSIM	1.01	0.00	176 ms	0.68	0.70	-	-
MultiCons	4.40	-	40 ms	-	-	-	-
Ours	0.62	0.0	9 ms	5.12	2.04	5.85	0.80

Benchmark

	Hopkins155			Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194 ms	-	-	-	-
GPCA	10.34	2.54	417 ms	-	-	34.60	33.95
MSL	5.03	0.00	19 h 11 m	-	-	-	-
LSA	4.94	0.90	9.47 s	-	-	38.30	38.58
ALC	3.76	0.26	5 m 15 s	3.81	0.17	24.31	19.04
ALC	3.37	0.49	6 m 11 s	1.28	1.07	-	-
LRR	5.41	0.53	1.1 s	-	-	33.67	36.01
SSC	2.45	0.20	920 ms	-	-	33.88	33.54
RSIM	1.01	0.00	176 ms	0.68	0.70	-	-
MultiCons	4.40	-	40 ms	-	-	-	-
Ours	0.62	0.0	9 ms	$\mathbf{5 . 1 2}$	$\mathbf{2 . 0 4}$	5.85	0.80

Benchmark

	Hopkins155			Hopkins12		KT3DMoSeg	
Method	Mean	Median	Time	Mean	Median	Mean	Median
RANSAC	9.76	3.21	194 ms	-	-	-	-
GPCA	10.34	2.54	417 ms	-	-	34.60	33.95
MSL	5.03	0.00	19 h 11 m	-	-	-	-
LSA	4.94	0.90	9.47 s	-	-	38.30	38.58
ALC	3.76	0.26	5 m 15 s	3.81	0.17	24.31	19.04
ALC	3.37	0.49	6 m 11 s	1.28	1.07	-	-
LRR	5.41	0.53	1.1 s	-	-	33.67	36.01
SSC	2.45	0.20	920 ms	-	-	33.88	33.54
RSIM	1.01	0.00	176 ms	0.68	0.70	-	-
MultiCons	4.40	-	40 ms	-	-	-	-
Ours	0.62	0.0	9 ms	5.12	2.04	$\mathbf{5 . 8 5}$	$\mathbf{0 . 8 0}$

Future work

- Generalization
- Synthetic data generation

Future work

- Generalization
- Synthetic data generation
- Model
- Affine \rightarrow pinhole camera model
- Priors on the shape matrix C
- Temporal uncertainty

Future work

- Generalization
- Synthetic data generation
- Model
- Affine \rightarrow pinhole camera model
- Priors on the shape matrix C
- Temporal uncertainty
- Architecture
- Incorporate global context
- Transformers: better than convolutions? possibility of attention-based completion

Thank you!

- Q\&A

Thank you!

- Q\&A
- Email: lochman@chalmers.se

Project page

ylochman.github.io/trajectory-embedding

[^0]: *ignoring uniform occlusions

[^1]: *ignoring uniform occlusions

[^2]: *ignoring uniform occlusions

