
Learned Trajectory Embedding for Subspace Clustering

Yaroslava Lochman1 Carl Olsson1,2 Christopher Zach1

1Chalmers University of Technology 2Lund University

Abstract

1Clustering multiple motions from observed point tra-
jectories is a fundamental task in understanding dynamic
scenes. Most motion models require multiple tracks to esti-
mate their parameters, hence identifying clusters when mul-
tiple motions are observed is a very challenging task. This is
even aggravated for high-dimensional motion models. The
starting point of our work is that this high-dimensionality
of motion model can actually be leveraged to our advan-
tage as sufficiently long trajectories identify the underly-
ing motion uniquely in practice. Consequently, we propose
to learn a mapping from trajectories to embedding vectors
that represent the generating motion. The obtained tra-
jectory embeddings are useful for clustering multiple ob-
served motions, but are also trained to contain sufficient in-
formation to recover the parameters of the underlying mo-
tion by utilizing a geometric loss. We therefore are able
to use only weak supervision from given motion segmenta-
tion to train this mapping. The entire algorithm consisting
of trajectory embedding, clustering and motion parameter
estimation is highly efficient. We conduct experiments on
the Hopkins155, Hopkins12, and KT3DMoSeg datasets and
show state-of-the-art performance of our proposed method
for trajectory-based motion segmentation on full sequences
and its competitiveness on the occluded sequences. Project
page: https://ylochman.github.io/trajectory-embedding.

1. Introduction

Multi-model fitting is a classical problem in computer vi-
sion, and a typical example is the task of estimating indi-
vidual motions from point trajectories observed in images
containing multiple moving (and potentially deforming) ob-
jects. A trajectory is a sequence of tracked point coordinates
extracted in different frames and is therefore also a point in
a high-dimensional space. The commonly used union-of-
subspace models [61] assume that point trajectories origi-
nating from the same object/motion are samples from the
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same (unknown) low dimensional subspace. The inference
problem thus becomes that of simultaneously determining
the parameters of underlying subspaces, the trajectory as-
signments to subspaces, and in practice also denoising of
the data. Specifically, given an observation matrix M2F×P
of point trajectories

M2F×P =

 | |
x1 . . . xP
| |

 , (1)

where F is the number of frames and P is the number of
points, the goal is to find a P × P permutation matrix Pπ
that orders the trajectories into sub-matrices {Xi}ci=1 corre-
sponding to different motions. Each motion is represented
by a 2F × ki basis matrix Bi whose columns span the sub-
space and therefore Xi = BiC

T
i , where Ci is a ki × Pi shape

matrix. Hence

M2F×P Pπ ≈
[
B1C

⊤
1 ... BcC

⊤
c

]
, (2)

where
∑c
i=1 Pi = P , and ranks ki are assumed to be small.

In this work we assume that the ranks {k1, . . . , kc} are
known which is a common scenario under multiple rigid
motions [49]. While estimating a single motion model Bi
from a cluster of trajectories belonging to the same motion
is relatively easy, the combination of cluster assignment and
model estimation turns inference into a complicated chicken
and egg problem. Further complications arise due to occlu-
sion and partial observations which make it unlikely that we
can observe all the full trajectories in all cases.

In this work we seek to learn a feature representation that
allows us to solve the clustering problem separately from
the motion estimation. For this purpose we train a simple
feed forward network (with the overall structure depicted in
Fig. 1) taking a trajectory as input and returning a corre-
sponding feature embedding. Using a metric learning loss
we ensure that the features are close if and only if corre-
sponding trajectories belong to the same motions. Our ap-
proach allows us to input trajectories of varying lengths and
different starting and ending times, making it possible to
cluster trajectories using their features without completing
any missing data. In summary our main contributions are:
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Figure 1. Schematic overview of the proposed approach. Input trajectories are passed through the feature extractor to obtain {fi}. The
subspace estimator generates the time-dependent basis using coordinate-MLP, infers basis coefficients from f , and outputs subspace B,
where each sub-matrix Bt ∈ R2×4 is computed via linear combination of basis functions. LInfoNCE is the contrastive loss that uses
ground truth cluster assignments, LResidual computes the trajectory-to-subspace geometric error, and LFeatDiff computes the feature difference
between input and reconstructed trajectory. For motion segmentation, the trajectories are clustered in a feature space using {fi}.

• We present a method to map point trajectories to discrim-
inative feature representations, which can be seen as com-
pact descriptions of the underlying generating motion.

• We show that clustering of trajectories can be performed
reliably solely using those features, achieving state-of-
the-art performance without the need for joint motion es-
timation and cluster assignments.

• The proposed feature extraction network is trained to be
invariant with respect to random occlusions and pixel
noise by utilizing a novel generative model that implic-
itly performs per-trajectory model estimation.

• We present and evaluate different ways to use the pro-
posed network, such as trajectory clustering, trajectory
completion and subspace estimation.

1.1. Related Work

Within geometric vision the traditionally dominant model-
fitting approaches are robust statistical methods based on
RANSAC [15]. In case of low dimensional models the ap-
proach provides a simple way of effectively exploring the
search space. Iterative RANSAC [48], which sequentially
finds models and removes their supporting inliers, is a sim-
ple option that handles settings with multiple models. It has
been observed that the greedy nature of the approach makes
it inefficient when a large number of models is present
[6, 12, 21, 62]. In contrast, MultiRANSAC [62] simultane-
ously handles multiple models using iteratively fused con-
sensus sets, and CONSAC [25] increases the efficiency of
sampling by learning a sampling strategy based on previous
detections. Energy minimization is used in [6, 12, 21] to
select models among random proposals that jointly explain
the data well. In [7] the hard point-to-model assignment
is dropped in favour of progressively determining dominant
models which enables clustering in consensus space.

As an alternative to consensus some works use prefer-
ence [31, 32, 46]. The J-linkage approach [46] uses affini-

ties between data and a set of models, followed by ag-
glomerative clustering to assign the data to models. The
T-linkage method [32] is based on a continuous relaxation
of the binary assignment problem. In [31] the preference
representation is used in a robust PCA formulation [10]
while [33] uses a set cover approach.

Low dimensional geometric models have also been used
to group longer point tracks, e.g. in [56] geometric two-
view relations are used to create pairwise affinities for a
spectral clustering stage. Segmentations computed from
images pairs are combined through an averaging approach
in [3, 4]. We note that for these local methods motion-
specific properties should be observable across all image
pairs in order to provide a largely coherent set of clusters.

Subspace models are commonly occurring in geometric
computer vision tasks. Early works like [38, 47] showed
that structure from motion under affine camera models is
essentially a subspace fitting problem. Further, shape de-
formations are modeled using a low dimensional subspace
in [9]. The generalization to multiple independently mov-
ing objects leads to segmentation into multiple subspaces
[8, 11, 17]. Approaches for handling degenerate and artic-
ulated cases were given in [45, 57, 58]. The general prob-
lem can be seen as an instance of subspace clustering which
assumes that high dimensional data lies in a union of low-
dimensional subspaces. The corresponding group of meth-
ods aim to simultaneously cluster the data points and esti-
mate the underlying subspaces [1, 26], and may also per-
form matrix completion [14, 27, 50]. The generalized PCA
approach (GPCA) [53–55] treats the union-of-subspaces as
a zero-level-set of a higher degree polynomial which is fit to
the data. A popular approach to the problem is sparse sub-
space clustering [5, 13], which has been shown to perform
well on the benchmark provided in [49]. These methods are
based on the notion of self-expressiveness, i.e. all data in a
d-dimensional subspace are linear combinations of d points



from that subspace. This enables an efficient approach that
is provably correct in the case of disjoint subspaces (see
Section 2). The LRR approach [29, 30] uses a dictionary
basis and enforces low rank patterns among the coefficients.

More recently, several deep learning methods have been
proposed for solving the problem of unsupervised subspace
clustering. The first work by Ji et al. [23] used deep auto-
encoder and introduced a self-expressive layer. Later, a
closed form solution of the self-expressive layer was de-
rived [43] which improved its efficiency. Alternatively, it
was shown [51] that using over-complete representations
increases robustness to noise and improves overall perfor-
mance. Zhang et al. [59] directly learns a self-expressive
data representation. The approach is highly scalable since it
circumvents the need for a quadratic number of coefficients
of the original self-expressive model.

While general subspace learning models typically do not
use temporal information, this can be of great importance
when analysing and predicting motion. For the reconstruc-
tion of deforming objects, Akhter et al [2] noted the du-
ality between trajectory space and shape space. The use
of pre-defined trajectory-bases such as a DCT basis (moti-
vated by the smoothness assumption of time-dependent tra-
jectories [20, 37]) leads to a reduction in the number of un-
knowns [2]. Finally, a probabilistic framework for subspace
clustering with temporal information is presented in [19].

2. Overview of the Approach
In this section we present our approach and the underlying
architecture of our network. Our goal is to learn function fθ
that takes an observed point trajectory as input and yields a
(relatively low-dimensional) feature embedding that is ap-
propriate for trajectory grouping. For this purpose we adopt
a small PointNet-style network [39]. One of the advantages
of this type of network, apart from its simplicity, is the built-
in invariance with respect to the permutation of the points in
the input tensor. In order to obtain a suitable feature repre-
sentation, we specify a number of desirable properties that
we try to infuse through the architecture and training:
• The features should be adequate for grouping/clustering

of trajectories. For this reason we want a latent space with
small within-cluster-distances and large between-cluster-
distances. This is achieved using an InfoNCE loss.

• Inspired by traditional motion segmentation formulations,
we aim for features to encode meaningful “geometric in-
formation” about the underlying motion subspaces. For
this purpose, we design a decoding module that estimates
a basis B for the underlying motion subspace that the tra-
jectory belongs to. This prevents input memorization and
greatly improves generalization to unseen data.

• Despite input tracks being of varying lengths we opt for
a feature embedding of a fixed size. This simplifies treat-
ment of problem instances with missing data and trajec-

tories starting and ending at different times. The decod-
ing module therefore takes an extra variable, specifying
at which time instance the rows of the basis matrix B

should be sampled. In this way the model allows us to
sub-sample and predict motion information beyond the
trajectory samples.

• Finally, feature embeddings and intermediate predictions
are preferred to behave smoothly with respect to added
input noise. To achieve this we construct a “noise-free”
version of the observed trajectory from the predicted ba-
sis, which we require to be close to the original trajectory
through a residual loss. Additionally, this reconstructed
trajectory is subsequently fed into the network to obtain a
corresponding feature vector, which is also required to be
close to the original feature embedding.

Because of the properties above we obtain a trajectory-
feature from which we can extract the full motion sub-
space. Thus we essentially learn a function that maps a
single trajectory to a subspace basis. For a general collec-
tion of subspaces, where trajectories can belong to multi-
ple of them, this may not be possible (using a purely geo-
metric approach). A simple example is line fitting to im-
age points, where points in the intersection of two models
can belong to any of them. In such cases geometry alone
is not enough to resolve ambiguous assignments but other
cues such as spatial smoothness of assignments [21] have to
be used. However, in high-dimensional settings with low-
dimensional subspaces the situation is somewhat different.
In these cases a typical assumption is that of disjoint sub-
spaces [13], that is, two subspaces only intersect at the ori-
gin, ensuring that there is a function that takes (non-zero)
trajectories to their corresponding subspaces. We remark
that while this assumption is sufficient for our purposes, it is
not necessary. Since our method learns a data-driven map-
ping from point tracks to subspaces, it is able to focus on
other trajectory properties than geometric ones. Therefore
it can potentially handle the case of intersecting subspaces
as long as the trajectory assignment is unambiguous.

The disjoint subspace assumption We conclude this
section by illustrating that the disjoint subspace assump-
tion is valid in practical settings by analysing the data in
the Hopkins 155 dataset. Figure 2 shows that re-using sub-
spaces to explain trajectories in the other clusters generally
leads to higher errors.

Formally, two linear subspaces Si and Sj are disjoint if
dim(Si ⊕ Sj) = dim(Si) + dim(Sj). Hence if Bi and Bj
contain bases for the two subspaces, the rank of the concate-
nated matrix, ηij = rank((Bi Bj)), fulfills ηij < rank(Bi) +
rank(Bj) if the subspaces intersect. We extracted subse-
quences of varying length from the Hopkins155 dataset and
used the ground-truth clusters to generate the correspond-
ing subspaces — for all pairs {Bi, Bj}, where i ̸= j and
shape(Bi) = shape(Bj), the rank ηij of the concatenated



F = 40 F = 50 F = 60

Figure 2. RMS normalized error of the trajectory clusters with
respect to the subspaces in Hopkins155 dataset (subsequences of
length F = 40, 50, and 60). An (i, j) cell corresponds to the
trajectory cluster of the ith motion and the subspace of j th motion.

matrix was found to be 82. This suggests that up to numerics
the subspaces do not intersect. In the following Section we
describe the specific architecture and the employed losses
in our approach in more detail.

3. Architecture and Training Losses
The schematic overview of the proposed architecture and
training losses is shown in Fig. 1. Using the hypothesis
that most observed trajectories come from a unique mo-
tion model, we aim to learn a function fθ mapping a point
trajectory directly to a representation of the corresponding
motion model. We interpret the output fθ(x) as an abstract
description of the generating motion, from which a concrete
representation to measure geometric consistency can be ex-
tracted. We choose linear (low-dimensional) subspaces as
the concrete realizations of motion models. Specifically, we
learn mappings fθ and gϕ using training data such that
1. fθ maps a trajectory of varying length to a fixed-length

feature embedding, and
2. gϕ converts this feature vector for a given query time into

the corresponding rows of the subspace representation.

3.1. Feature Extraction

To construct a discriminative function fθ(·), that is able
to infer the motion from an input point trajectory, we first
leverage the ability of the neural networks to compress high-
dimensional complex data space into a lower-dimensional
latent space with task specific invariance properties, from
which it is easier to infer the output. A feature extractor for
the point trajectories fθ : x 7→ f ∈ Rd is therefore trained
to produce invariant feature representations using ground
truth clusters. In particular, an invariance with respect to
the measurement noise and the variations within the motion
clusters is of our interest. We therefore use a contrastive
loss, namely a variant of the InfoNCE loss [36], to conduct
metric learning, leading to a spread of feature embeddings

2The matrix rank is computed as the number of singular values greater
than δσ1, where σ1 is the largest singular value, δ = 2Fε, and ε ≈ 10−7

is the numerical zero for torch.float32.

in order to improve feature-based motion clustering,

LInfoNCE = − 1

|D|
∑

(i,j,l,k)∈D

log

(
pij

pij + plk

)
,

pij = exp

(
−∥fi − fj∥22

T

)
, (3)

where fi = fθ(xi) and D is the set of quadruples (i, j, l, k)
where (i, k) belong to the same cluster and (l, k) are ran-
dom pairs, and T is the temperature (hyper-)parameter,
which we fix to 1. LInfoNCE is an instance of a supervised
contrastive loss and is tightly connected to the triplet loss
used in metric learning [24].

As mentioned earlier, the proposed architecture resem-
bles PointNet [39] with several modifications. The em-
ployed encoder consists of 1D temporal convolutional lay-
ers applied to each trajectory independently, with x and
y values representing two input channels. A global max-
pooling in a temporal domain is then applied on the time-
dependent representations, followed by a small MLP and
an L2 normalization. The features are therefore lying on
the d− 1-dimensional unit sphere. Note that we do not ap-
ply pooling across the points (global context layer) due to
the disjoint subspace assumption. For the experiments, we
set the dimensionality of the latent space to d = 128.

3.2. Subspace Estimation

The latent vector fθ(x) ideally identifies a motion model,
but for geometric consistency this feature embedding re-
quires conversion into a suitable mathematical motion
model. We assume that observed point trajectories are gen-
erated by low-rank subspace models, and therefore the fea-
ture embedding is mapped by a subsequent network gϕ to
the corresponding matrix representation of the associated
subspace. Specifically, the mapping gϕ : F × R → R2×r

produces rows Bt for the given motion model f = fθ(x)
and the time index t. Ideally the input trajectory x lies in
the predicted subspace; if the trajectory x is consisting of
(2D) points observed at times t1, . . . , tF , then the output
subspace is

B =

gϕ(fθ(x), t1)
...

gϕ(fθ(x), tF )

 , (4)

and the (squared) residual is given in closed-form as

min
c
∥x− Bc∥22 = ∥x− BB†x∥22, (5)

where c is the coefficient vector and B† = (B⊤B)−1B⊤. If
the network identified the subspace correctly, then the resid-
ual is in the order of the observation noise level (and there-
fore small).



Subspace basis functions The network gϕ can be a small
but generic MLP. Alternatively, we may leverage existing
domain knowledge and choose the structure of gϕ accord-
ingly. In particular we assume that all motions are linear
combination of a finite, but continuous time trajectory ba-
sis {hj}. The basis functions hj can be fully fixed (such as
a cosine basis with pre-determined frequencies and phase
shifts [2]), parametric (such as the cosine basis with train-
able frequencies and phase shifts [44]) or entirely non-
parametric (i.e. represented by a generic MLP). Our choice
of basis functions is a damped version of a cosine basis and
is given as follows,

hjψ(t) = e−(αj(t−µj))
2

cos(βjt+ γj), (6)

where ψ = (µj , αj , βj , γj)j are trainable parameters. The
mapping gϕ can therefore be written as a composition

gϕ(f , t) = ωζ(f)hψ(t), (7)

where hψ(t) = (hjψ(t))j , and the trainable function ωζ ex-
tracts the basis coefficients from f . If we haveN basis func-
tions (i.e. dim(hψ(t)) = N ), then ωζ(f) is a 2r×N matrix.
The total set of trainable parameters in the subspace estima-
tion network is ϕ = (ζ, ψ). Finally, the network prediction
can be compactly written as

B = Hψ(t)Ωζ(fθ(x)), (8)

where Ωζ(f) = reshape2N×r (ωζ(f)) and

Hψ(t) =


hψ(t1)

⊤

hψ(t1)
⊤

...
hψ(tF )

⊤

hψ(tF )
⊤

 ∈ R2F×2N . (9)

We set the number of subspace basis functions to N = 64
in our experiments. Since the predicted subspace matrix B

augments the feature representation (see Sec. 3.3 below),
we enforce a unique subspace representation by fixing the
top block of B to the identity matrix (by multiplying with
the respective inverse).

Time dependence and time invariance The network
represented by gϕ can be interpreted as taking a “feature”
token f and a time coordinate t as input, and is therefore
somewhat analogous to the coordinate-MLP employed for
implicit neural primitives such as [35, 44] or time series
modeling [16]. The continuous time basis {hj} can be seen
as domain-specific equivalent to positional coding, but its
design is based on the expected motion patterns and does
not necessarily meet the requirements of generic positional
coding [40, 44, 60].

The formulation above is intentionally not time-
invariant: the same trajectory observed at different starting
times may predict different motion models. This is usu-
ally a desired behavior for motion segmentation, e.g. two
cars traveling the same path at different time form differ-
ent motion segments. As with CNNs applied to images,
low-level trajectory features are extracted by convolutional
layers, and time-dependence is incorporated via final fully
connected and pooling layers.

3.3. Training

The total training loss is the weighted sum of a con-
trastive loss LInfoNCE applied on {vi}, where vi =
(flatten(Bi)⊤ f⊤i )⊤, the reconstruction loss LResidual

LResidual =
1
P

P∑
j=1

∥xj − x̃j∥22 , (10)

and the feature difference loss

LFeatDiff =
1
P

P∑
j=1

∥fθ(xj)− fθ(x̃j)∥22 , (11)

where x̃j = B(xj)B(xj)
†xj is the projection of xj onto

B(xj). In short, LInfoNCE forces both an approximate invari-
ance of the feature extractor fθ with respect to the varia-
tions within clusters and smoothness of the coordinate-MLP
gϕ, LResidual ensures geometric consistency of the subspaces
with respect to input trajectories, and LFeatDiff forces an ap-
proximate invariance of fθ with respect to the pixel noise
and can also be seen as enforcing smoothness of fθ. We
train the network in two stages. First, we pre-train fθ with
LInfoNCE until convergence. Then we add gϕ and train it
together with fθ using the total loss. To enforce the approx-
imate invariance with respect to random detection failures,
we synthesize missing points during training by applying
dropout to the input sequences.

3.4. Trajectory Completion

Let Bθ,ϕ(x, t) provide the subspace for an input trajectory
x ∈ R2F and time vector t = (t1, ..., tF )

⊤. Assume now
that x is only partially observed, and let w ∈ {0, 1}2F be
the visibility mask. Further, let w̄ := 1 − w. The goal
of the trajectory completion is to estimate missing values x̄
that minimize the following objective

J(x̄) :=
∥∥(I− B(x̄)B(x̄)†)(w ⊙ x+ w̄ ⊙ x̄)

∥∥2 , (12)

where B(x̄) = Bθ,ϕ(w⊙ x+ w̄⊙ x̄, t). Back-propagation
for gradient-based determination of x̄ is in principle possi-
ble but computationally expensive. Alternatively, we rely
on the approximate invariance of the feature extractor fθ
with respect to the length of the input sequence and ex-
trapolate the output subspace in time using gϕ(f , t). More



Hopkins155 Hopkins12 KT3DMoSeg
2 motions 3 motions All

Method Mean Median Time Mean Median Time Mean Median Time Mean Median Mean Median
RANSAC [48] 5.56 1.18 175ms 22.94 22.03 258ms 9.76 3.21 194ms - - - -
GPCA [54] 4.59 0.38 324ms 28.66 28.26 738ms 10.34 2.54 417ms - - 34.60 33.95
MSL [45] 4.14 0.00 11h 4m 8.23 1.76 1d 23h 5.03 0.00 19h 11m - - - -
LSA [57] 3.45 0.59 7.58s 9.73 2.33 15.96s 4.94 0.90 9.47s - - 38.30 38.58
ALC5 [42] 3.03 0.00 - 6.26 1.02 - 3.76 0.26 5m 15s 3.81 0.17 24.31 19.04
ALCsp [42] 2.40 0.43 - 6.69 0.67 - 3.37 0.49 6m 11s 1.28 1.07 - -
LRR [30] 4.10 0.22 - 9.89 0.56 - 5.41 0.53 1.1s - - 33.67 36.01
SSC [13] 0.82 0.00 - 2.45 0.20 - 2.45 0.20 920ms - - 33.88 33.54
RSIM [22] 0.78 0.00 - 1.77 0.28 - 1.01 0.00 176ms 0.68 0.70 - -
MultiConsensus [7] - - - - - - 4.40 - 40ms - - - -
Ours 0.63 0.0 7ms 0.60 0.0 10ms 0.62 0.0 9ms 5.12 2.04 5.85 0.80

Table 1. Motion segmentation results on the Hopkins155 [49], Hopkins12 [41] and KT3DMoSeg [56] datasets. The evaluation metrics is
classification error (%). ‘-’ indicates that the results were not reported / no code available.

specifically, the subspace of w⊙x+w̄⊙ x̄ can be estimated
from xvis—a fully visible sub-trajectory of the trajectory
x—as long as the feature representation f can be inferred
(i.e. xvis is sufficiently long). If we fix this estimate B and
let W := diag(w), W̄ := diag(w̄), the new objective can be
stated as

J̃(x̄) :=
∥∥(I− BB†

)
Wx+

(
I− BB†

)
W̄x̄

∥∥2 , (13)

and the minimizer x̄∗ of J̃ is given by

x̄∗ = −
((
I− BB†

)
W̄
)† (

I− BB†
)
Wx =: A(B)x. (14)

It is now possible to refine the estimated subspace using x̄∗

by feeding w ⊙ x+w̄ ⊙ x̄∗ into the network. Overall, we
apply the following iterative procedure for trajectory com-
pletion,  B0 ← Bθ,ϕ(xvis, t)

x̄i+1 ← A(Bi)x
Bi+1 ← Bθ,ϕ(w ⊙ x+w̄ ⊙ x̄i+1, t).

(15)

Figure 3. Histograms of the classification errors for the groups
with (left) 2 and (right) 3 motions in Hopkins155 dataset.

4. Experiments
The proposed network was trained on the two mo-
tion segmentation datasets: Hopkins155 [49] and
KT3DMoSeg [56], yielding two different sets of weights.
In our experiments, we used NVIDIA GeForce RTX 3080,
CUDA 11.5, PyTorch 1.11.

To obtain groups of trajectories, it is sufficient to perform
a partial forward pass through the (trained) feature extractor
fθ and cluster in the feature space. We use hierarchical clus-
tering as it provides a meaningful framework for selecting
the number of clusters, i.e. motions. The subspaces can then
be fit to each cluster. If the goal is to estimate the subspace
for a single input trajectory, a full forward pass through fθ
and gϕ should be performed. For motion segmentation with
missing data, the largest fully visible blocks of trajectories
(but ignoring single occluded points) can be used to esti-
mate the initial subspaces B, followed by trajectory comple-
tion as outlined in (15). The completed trajectories can then
be used to cluster in the feature space.

4.1. Motion Segmentation

We evaluate the performance of the proposed network in
terms of motion segmentation on Hopkins155 [49], Hop-
kins12 [41], and KT3DMoSeg [56] datasets. We first
compare the proposed method to the state-of-the-art al-
gorithms that similarly assume rank-4 of B: sequential
RANSAC [48], GPCA [54], MSL [45], LSA [57] (with the
global subspace dimensionality D = 4n for n clusters),
ALC5 and ALCsp [42], LRR [30], SSC [13], RSIM [22],
and MultiConsensus [7]. We then also compare our method
to the other approaches making different assumptions on the
underlying motion model [3, 4, 28, 56]. The metrics used
to evaluate clustering performance is the classification error
(%) which is standard for this benchmark [49].

Results on Hopkins155 dataset Hopkins155 [49] is the
commonly used benchmark for trajectory-based motion



Figure 4. The approximate invariance measured as an angle between features extracted from the reference trajectory and its perturbed
version using (left) Gaussian pixel noise, (middle) perturbation within subspace, and (right) uniform occlusions. The gradually increasing
level of corruption is shown on the x-axis.

segmentation. The dataset consists of 155 sequences with
63-556 point trajectories generated by two or three motions
in the scene. Each trajectory is fully visible, and the length
varies from 15 to 100 frames. The averaged results are
shown in the left block of Table 1, and the histograms of
classification errors are shown in Fig. 3. Our network is
very fast and produces the most accurate segmentations on
fully visible trajectories.

Results on Hopkins12 dataset Hopkins12 [41] is a com-
monly used dataset for evaluating subspace clustering with
missing data. It consists of 12 corrupted sequences from
Hopkins155 dataset, where the corruption was done manu-
ally by labeling entries of trajectories as missing. The cor-
ruption rate of the observation matrix M varies from 1% to
23%. For ALC5 and ALCsp [42], we report l1-based en-
try completion results. The results are shown in the middle
block of Table 1. The proposed network shows promising
results. Note that the maximum corruption rate of the in-
dividual trajectories in the Hopkins12 dataset is 93% and,
unlike all the state-of-the-art approaches, the proposed tra-
jectory completion method is not global, i.e. it works with
individual trajectories. Therefore, if a provided individual
sub-trajectory does not contain sufficient relevant informa-
tion for motion estimation (which becomes more likely as
the trajectory gets shorter), incorporating information from
all tracks becomes necessary to disambiguate the true mo-
tion. Utilizing such global trajectory information is left for
future research.

Results on KT3DMoSeg dataset KT3DMoSeg [56] is an
adapted version of the KITTI dataset [18, 34] containing 22
sequences with 158-1018 point trajectories and annotated
segmentations. It is more challenging than Hopkins155 in
several aspects. There is a dominant motion corresponding
to static “background” scene which makes cluster distribu-
tion unbalanced. The trajectories are also highly occluded:
the corruption rate of M goes up to 54%, and for the indi-
vidual trajectories — up to 75%. Lastly, the sequences have
shorter length of 10 to 20 frames. The results for this dataset

are shown in the right block of Table 1 indicating that the
proposed approach outperforms previous methods.

Methods with different assumptions We also compared
our approach to the other methods making different assump-
tions. Two-perspective-view (TPV) [28] assumes perspec-
tive cameras and uses pairwise epipolar relations. Spectral
clustering methods proposed by [56]: kernel addition (Ker-
Add), co-regularization (CoReg), and subset constrained
(Subset) spectral clustering also look at pairwise relations,
but use fundamental matrices, affine matrices or homogra-
phies to compute the pairwise affinities. SYNCH [3] and
MODE [4] similarly fit multiple fundamental matrices to
each pair of images, but perform averaging. They assume
that only pairwise matches are given. These methods are not
directly comparable to ours, however the proposed method
proves to be competitive as evidenced in Table 2.

Hopkins155 Hopkins12 KT3DMoSeg
Method Mean Mean Med. Mean Med.
TPV [28] 2.34 - - - -
KerAdd [56] 0.36 0.11 0.0 8.31 1.02
CoReg [56] 0.46 0.06 0.0 7.92 0.75
Subset [56] 0.31 0.06 0.0 8.08 0.71
SYNCH-tracks [3] 3.67 5.46 0.57 - -
SYNCH [3] 1.19 3.19 0.28 - -
MODE [4] 1.37 4.33 0.38 - -
Our method 0.62 5.12 2.04 5.85 0.80

Table 2. Comparison to the other methods making different as-
sumptions. TPV [28] has no code publicly available.

4.2. Approximate Invariances of fθ
We experimentally validate the approximate invariance of
the trained feature extractor fθ with respect to different
types of synthetic data corruption: (1) Gaussian pixel noise
with the standard deviation σ gradually increasing up to 10
px, (2) perturbations within the subspace, where the tra-
jectories are first corrupted by Gaussian pixel noise with
σ up to 300 px and then projected back to the underlying
subspace, (3) synthesized uniform occlusions with missing
data levels going up to 50%, and (4) tracking failures, where



Figure 5. The approximate invariance measured as an angle between features extracted from the reference trajectory and its shortened
version for (left) shorter sequences with F = 15 . . . 24, (middle) mid-length sequences with F = 25 . . . 31, and (right) longer sequences
with F = 35 . . . 61. The gradually increasing percentage of sequence length reduction is shown on the x-axis.

the rearmost points are gradually excluded from the trajec-
tories. All types of corruption are applied on the training
sequences of Hopkins155 dataset. The invariances are mea-
sured using the angle between the features extracted from
original and corrupted trajectories. The smaller the angle
is, the more invariant the feature is to the certain type of
data corruption.

Results for the pixel noise, perturbations within the sub-
space, and uniform occlusions are shown in Fig. 4. Note
that the features are L2-normalized in the d-dimensional
space for d = 128. In such a high-dimensional space the
two randomly picked vectors are likely to be almost orthog-
onal [52]. The network proves to be approximately invariant
hence robust to these types of corruption, and especially to
the pixel noise. Since 8-10 px is quite large (for the images
of sizes 320×240, 640×480, or 720×480), this result also
shows robustness of fθ to occasional outlying points in the
trajectory. The results for the synthesized tracking failures
are shown in Fig. 5, where a single curve corresponds to a
certain initial trajectory length F . The angles are slightly
higher for shorter sequences, which is expected since they
contain less information. Note that during training we do
not force the network to produce the same feature represen-
tations for the trajectories of the same point starting at the
same time but having different length.

Figure 6. Mean pixel error of recovering from random occlusions
for the corruption rates of (left) 10-40% and (right) 50-80%.

4.3. Trajectory Completion

We further evaluate the completion accuracy of the pro-
posed method on the trajectories from Hopkins155 dataset
with synthesized uniform occlusions. The performance is
measured using the mean pixel error between the ground
truth (i.e., detected/tracked) values of the synthetically oc-
cluded points and the predicted values. The error as a func-
tion of iterations for different corruption rates is shown in
Fig. 6, where we split the results into a minor and a major
corruption group. From the results we conclude that it is
sufficient to run the algorithm (15) for 3 to 5 iterations for
minor corruptions which takes 1s on average, and 5 to 20
iterations for major corruptions which takes 3s on average.

5. Conclusion

In this paper we propose to learn a mapping from point tra-
jectories to feature vectors in an embedding space, which
fully identify the generating motion. We illustrate that these
feature vectors can be directly used for subspace clustering,
thereby eliminating the need for simultaneous estimation of
assignments and subspace models. The proposed training
loss ensures not only the utility of the obtained embedding
for clustering, but also forces the feature vector to encode
the actual motion parameters, which are retrieved by a ded-
icated coordinate-MLP. Comparisons to baselines on Hop-
kins155 and KT3DMoSeg highlight the efficiency and ac-
curacy of our method, providing top clustering results with
running time below 10ms.

In this work we focus on the linear subspace framework
as sole motion model to explain observed trajectories. One
direction for future work is how to incorporate additional
and/or different prior assumptions on the motion model into
our method. Further, the linear subspace assumption is
strongly tied to affine cameras, which only approximate the
more realistic pinhole camera model. Therefore extending
this work to more general camera models is a challenging
direction for future research.



References
[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos,

and Prabhakar Raghavan. Automatic subspace clustering of
high dimensional data for data mining applications. In Pro-
ceedings of the 1998 ACM SIGMOD international confer-
ence on Management of data, pages 94–105, 1998. 2

[2] Ijaz Akhter, Yaser Sheikh, Sohaib Khan, and Takeo Kanade.
Trajectory space: A dual representation for nonrigid struc-
ture from motion. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(7):1442–1456, 2010. 3, 5

[3] Federica Arrigoni and Tomas Pajdla. Motion segmentation
via synchronization. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 2, 6, 7

[4] Federica Arrigoni and Tomas Pajdla. Robust motion seg-
mentation from pairwise matches. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 671–681, 2019. 2, 6, 7

[5] Liang Bai and Jiye Liang. Sparse subspace clustering
with entropy-norm. In International conference on machine
learning, pages 561–568. PMLR, 2020. 2

[6] Daniel Barath and Jiri Matas. Progressive-x: Efficient,
anytime, multi-model fitting algorithm. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 3780–3788, 2019. 2

[7] Daniel Barath, Denys Rozumnyi, Ivan Eichhardt, Levente
Hajder, and Jiri Matas. Finding geometric models by cluster-
ing in the consensus space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5414–5424, 2023. 2, 6

[8] T.E. Boult and L. Gottesfeld Brown. Factorization-based
segmentation of motions. In Proceedings of the IEEE Work-
shop on Visual Motion, pages 179–186, 1991. 2

[9] Christoph Bregler, Aaron Hertzmann, and Henning Bier-
mann. Recovering non-rigid 3d shape from image streams.
In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), pages
690–696. IEEE, 2000. 2

[10] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis? J. ACM, 58(3), 2011.
2

[11] J. Costeira and T. Kanade. A multi-body factorization
method for motion analysis. In Proceedings of IEEE Inter-
national Conference on Computer Vision, pages 1071–1076,
1995. 2

[12] A. Delong, A. Osokin, H. Isack, and Y. Boykov. Fast approx-
imate energy minimization with label costs. International
Journal of Computer Vision, 96(1):1–27, 2012. 2
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Learned Trajectory Embedding for Subspace Clustering

Supplementary Material

A. Experimental Details
As discussed in the main paper, the feature extractor fθ
takes a variable-length input trajectory x with two input
channels representing the x and y values and outputs the
feature f ∈ Rd, and the dimensionality of the latent space
is set to d = 128. Specifically, the network consists of
the three 1D convolutional layers (with channels chang-
ing as follows: 2 → 64 → 128 → 512), followed by
max pooling in the temporal domain and two linear layers
(512 → 128 → 128). All convolutional operations in fθ
use kernels of size 3 with stride 1. The subspace estimator
consists of the parametric basis functions hjψ with trainable
parameters (µj , αj , βj , γj) and a multilayer perceptron ωζ
which infers the subspace basis coefficients from the feature
f . In particular, ωζ has three linear layers (128 → 512 →
1024 → 512), and the resulting 512-dimensional vector is
reshaped into a coefficient matrix Ωζ(f) ∈ R128×4 used in
(8). ReLU activation is used after each convolutional and
each linear layer. During training, we used Adam optimizer
with a learning rate set to 0.001, reduced at each epoch with
an exponential decay of 0.999.

B. Ablation Studies
We conduct an ablation study in which we first train only the
feature extractor fθ with InfoNCE loss (and obtain network
weights θ1). Subsequently, we include the subspace estima-
tor gϕ and continue training with the entire loss, resulting
in weights θ2. The two sets of weights are compared us-
ing the classification error of clustering in the feature space.
Table 3 shows that the performance on validation and test
data improves with the full architecture and the complete
loss, proving the advantage of training the feature extractor
fθ together with the subspace estimator gϕ.

Validation subset Test subset
Weights Arch. + loss Mean Median Mean Median
θ1 fθ + InfoNCE loss 1.80 0.00 2.97 0.00
θ2 fθ + gϕ + total loss 1.51 0.00 0.85 0.21

Table 3. Classification error (%) of clustering with fθ1 trained
using fθ + InfoNCE, and fθ2 trained using fθ & gϕ + total loss.

C. Time Complexity
As discussed in the main paper, our method is very fast.
Its time complexity is analysed below. A single trajectory
inference requires O(F ) computations due to the convo-
lutional structure. Passing N full trajectories is therefore

O(NF ), and the subsequent clustering requires O(N2).
The trajectory completion comprises matrix operations of
size up to 2F × 2F hence costs O(F 3). It can also be
sped up by employing randomized singular value decom-
position.


	. Introduction
	. Related Work

	. Overview of the Approach
	. Architecture and Training Losses
	. Feature Extraction
	. Subspace Estimation
	. Training
	. Trajectory Completion

	. Experiments
	. Motion Segmentation
	. Approximate Invariances of f
	. Trajectory Completion

	. Conclusion
	. Experimental Details
	. Ablation Studies
	. Time Complexity

